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Speech Enhancement

• Typical objective function 

• Typical objective function 
➢ Mean square error (MSE) [Xu et al., TASLP 2015], L1 [Pascual et al., Interspeech

2017], likelihood [Chai et al., MLSP 2017], STOI [Fu et al., TASLP 2018].

Enhancing

G Output

Objective function

➢ GAN is used as a new objective function to estimate the parameters in G.

➢Model structures of G: DNN [Wang et al. NIPS 2012; Xu et al., SPL 2014], DDAE   
[Lu et al., Interspeech 2013], RNN (LSTM) [Chen et al., Interspeech 2015;
Weninger et al., LVA/ICA 2015], CNN [Fu et al., Interspeech 2016]. 



Speech Enhancement
• Speech enhancement GAN (SEGAN) [Pascual et al., Interspeech 2017]

z



Table 1: Objective evaluation results. Table 2: Subjective evaluation results.

Fig. 1: Preference test results.

Speech Enhancement (SEGAN)

SEGAN yields better speech enhancement results than Noisy and Wiener.

• Experimental results 



• Pix2Pix [Michelsanti et al., Interpsech 2017]
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Fig. 2: Spectrogram comparison of Pix2Pix with baseline methods.

Speech Enhancement (Pix2Pix)
• Spectrogram analysis 

Pix2Pix outperforms STAT-MMSE and is competitive to DNN SE.

NG-DNN STAT-MMSE

Noisy Clean NG-Pix2Pix



Table 3: Objective evaluation results.

Speech Enhancement (Pix2Pix)
• Objective evaluation and speaker verification test

Table 4: Speaker verification results. 

1.  From the objective evaluations, Pix2Pix outperforms Noisy and 
MMSE and is competitive to DNN SE.

2.  From the speaker verification results, Pix2Pix outperforms the 
baseline models when the clean training data is used.



• Frequency-domain SEGAN (FSEGAN) [Donahue et al., ICASSP 2018]
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Fig. 2: Spectrogram comparison of FSEGAN with L1-trained method.

Speech Enhancement (FSEGAN)
• Spectrogram analysis 

FSEGAN reduces both additive noise and reverberant smearing.



Table 5: WER (%) of SEGAN and FSEGAN. Table 6: WER (%) of FSEGAN with retrain.

Speech Enhancement (FSEGAN)
• ASR results

1. From Table 5, (1) FSEGAN improves recognition results for ASR-Clean.
(2) FSEGAN outperforms SEGAN as front-ends.

2. From Table 6, (1) Hybrid Retraining with FSEGAN outperforms Baseline; 
(2) FSEGAN retraining slightly underperforms L1–based retraining.



= 𝐸𝒔𝑓𝑎𝑘𝑒 log(1 − 𝑫𝑺 𝒔𝑓𝑎𝑘𝑒 , 𝜃 )

+𝐸𝒏𝑓𝑎𝑘𝑒 log(1 − 𝑫𝑵 𝒏𝑓𝑎𝑘𝑒 , 𝜃 )

• Adversarial training based mask estimation (ATME) 
[Higuchi et al., ASRU 2017]
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Fig. 3: Spectrogram comparison of (a) noisy; (b) MMSE with 
supervision; (c) ATMB without supervision.

Speech Enhancement (ATME)
• Spectrogram analysis 

The proposed adversarial training mask estimation can 
capture speech/noise signals without supervised data.

Speech mask Noise mask 𝑀𝑓,𝑡
𝑛



➢ The estimated mask parameters are used to compute spatial covariance 
matrix for MVDR beamformer.

➢ Ƹ𝑠𝑓,𝑡= 𝐰𝑓
H 𝐲𝑓,𝑡 ,  where Ƹ𝑠𝑓,𝑡 is the enhanced signal, and 𝐲𝑓,𝑡 denotes the 

observation of M microphones, 𝑓 and 𝑡 are frequency and time indices; 
𝐰𝑓 denotes the beamformer coefficient. 

➢ The MVDR solves 𝐰𝑓 by: 𝐰𝑓= 
(𝑅𝑓

𝑠+𝑛
)−1 𝐡𝑓

𝐡𝑓
H (𝑅𝑓

𝑠+𝑛
)−1 𝐡𝑓

➢ To estimate 𝐡𝑓, the spatial covariance matrix of the target signal, 𝑅𝑓
𝑠

, is 

computed by : 𝑅𝑓
𝑠
= 𝑅𝑓

𝑠+𝑛
－𝑅𝑓

𝑛
, where 𝑅𝑓

𝑛
= 
𝑀𝑓,𝑡

𝑛
𝐲𝑓,𝑡 𝐲𝑓,𝑡

H

σ𝑓,𝑡𝑀𝑓,𝑡
𝑛 , 𝑀𝑓,𝑡

𝑛
was 

computed by AT.

• Mask-based beamformer for robust ASR

Speech Enhancement (ATME)



Table 7: WERs (%) for the development and evaluation sets.

• ASR results 

Speech Enhancement (ATME)

1. ATME provides significant improvements over Unprocessed. 
2. Unsupervised ATME slightly underperforms supervised MMSE.



𝐺𝑆→𝑇 𝐺𝑇→𝑆

as close as possible

𝐷𝑇
Scalar: belongs to 
domain T or not

𝐺𝑇→𝑆 𝐺𝑆→𝑇

as close as possible

𝐷𝑆
Scalar: belongs to 
domain S or not

Speech Enhancement (AFT) 
• Cycle-GAN-based acoustic feature transformation (AFT) 

[Mimura et al., ASRU 2017]

𝑉𝐹𝑢𝑙𝑙 = 𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌 ＋𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌
＋𝜆 𝑉𝐶𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋)

Noisy Enhanced Noisy
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• ASR results on noise robustness and style adaptation

Table 8: Noise robust ASR. Table 9: Speaker style adaptation.

1. 𝐺𝑇→𝑆 can transform acoustic features and effectively improve 
ASR results for both noisy and accented speech. 

2. 𝐺𝑆→𝑇 can be used for model adaptation and effectively improve 
ASR results for noisy speech.

S: Clean; 𝑇: Noisy JNAS: Read; CSJ-SPS: Spontaneous (relax);
CSJ-APS: Spontaneous (formal);

Speech Enhancement (AFT) 
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• Postfilter for synthesized or transformed speech

➢ Conventional postfilter approaches for G estimation include global variance 
(GV) [Toda et al., IEICE 2007], variance scaling (VS) [Sil’en et al., Interpseech
2012], modulation spectrum (MS) [Takamichi et al., ICASSP 2014],DNN with 
MSE criterion [Chen et al., Interspeech 2014; Chen et al., TASLP 2015].

➢ GAN is used a new objective function to estimate the parameters in G.
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• GAN postfilter [Kaneko et al., ICASSP 2017]

➢ Traditional MMSE criterion results in statistical averaging. 

➢ GAN is used as a new objective function to estimate the parameters in G.

➢ The proposed work intends to further improve the naturalness of 
synthesized speech or parameters from a synthesizer.  
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Fig. 4: Spectrograms of: (a) NAT (nature); (b) SYN (synthesized); (c) VS (variance 
scaling); (d) MS (modulation spectrum); (e) MSE; (f) GAN postfilters.

Postfilter (GAN-based Postfilter)
• Spectrogram analysis 

GAN postfilter reconstructs spectral texture similar to the natural one.



Fig. 5: Mel-cepstral trajectories (GANv: 
GAN was applied in voiced part).

Fig. 6: Averaging difference in 
modulation spectrum per Mel-
cepstral coefficient. 

Postfilter (GAN-based Postfilter)
• Objective evaluations

GAN postfilter reconstructs spectral texture similar to the natural one.



Table 10: Preference score (%). Bold font indicates the numbers over 30%.

Postfilter (GAN-based Postfilter)

• Subjective evaluations

1. GAN postfilter significantly improves the synthesized speech. 
2. GAN postfilter is effective particularly in voiced segments. 
3. GANv outperforms GAN and is comparable to NAT.



Postfilter (GAN-postfilter-SFTF)
• GAN post-filter for STFT spectrograms [Kaneko et al., 

Interspeech 2017]

➢ GAN postfilter was applied on high-dimensional STFT spectrograms.
➢ The spectrogram was partitioned into N bands (each band overlaps its  

neighboring bands). 
➢ The GAN-based postfilter was trained for each band. 
➢ The reconstructed spectrogram from each band was smoothly connected.



• Spectrogram analysis 

Fig. 7: Spectrograms of: (1) SYN, (2) GAN, (3) Original (NAT)

Postfilter (GAN-postfilter-SFTF)

GAN postfilter reconstructs spectral texture similar to the natural one.



Speech Synthesis
• Input: linguistic features; Output: speech parameters 
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• Speech synthesis with anti-spoofing verification (ASV) 
[Saito et al., ICASSP 2017]
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Fig. 8: Averaged GVs of MCCs.

Speech Synthesis (ASV)
• Objective and subjective evaluations

1. The proposed algorithm generates MCCs similar to the natural ones. 

Fig. 9: Scores of speech quality.

2. The proposed algorithm outperforms conventional MGE training.



• Speech synthesis with GAN (SS-GAN) [Saito et al., TASLP 2018]
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Fig. 11: Scores of speech quality 
(sp and F0).

.

Speech Synthesis (SS-GAN)

• Subjective evaluations

Fig. 10: Scores of speech quality (sp).

The proposed algorithm works for both spectral parameters and F0.



Speech Synthesis
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• Speech synthesis with GAN glottal waveform model 
(GlottGAN) [Bollepalli et al., Interspeech 2017]

Glottal waveform Glottal waveform



• Objective evaluations

Speech Synthesis (GlottGAN) 

The proposed GAN-based approach can generate glottal 
waveforms similar to the natural ones.

Fig. 12: Glottal pulses generated by GANs.

G, D: DNN

G, D: conditional DNN

G, D: Deep CNN

G, D: Deep CNN + LS loss 



• Speech synthesis with GAN & multi-task learning 
(SS-GAN-MTL) [Yang et al., ASRU 2017]
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• Speech synthesis with GAN & multi-task learning 
(SS-GAN-MTL) [Yang et al., ASRU 2017]

Speech Synthesis (SS-GAN-MTL) 
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• Objective and subjective evaluations

Table 11: Objective evaluation results. Fig. 13: The preference score (%).

Speech Synthesis (SS-GAN-MTL)

1. From objective evaluations, no remarkable difference is observed. 
2. From subjective evaluations, GAN outperforms BLSTM and ASV, 

while GAN-PC underperforms GAN. 



• Convert (transform) speech from source to target

➢ Conventional VC approaches include Gaussian mixture model (GMM) [Toda 
et al., TASLP 2007], non-negative matrix factorization (NMF) [Wu et al., TASLP 
2014; Fu et al., TBME 2017], locally linear embedding (LLE) [Wu et al., 
Interspeech 2016], restricted Boltzmann machine (RBM) [Chen et al., TASLP 
2014], feed forward NN [Desai et al., TASLP 2010], recurrent NN (RNN) 
[Nakashika et al., Interspeech 2014].

Voice Conversion 

G Output

Objective function
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• VAW-GAN [Hsu et al., Interspeech 2017]

➢Conventional MMSE approaches often encounter the “over-smoothing” issue.

➢ GAN is used a new objective function to estimate G.

➢ The goal is to increase the naturalness, clarity, similarity of converted speech. 
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• Objective and subjective evaluations

Fig. 15: MOS on naturalness.Fig. 14: The spectral envelopes.

Voice Conversion (VAW-GAN)

VAW-GAN outperforms VAE in terms of objective and subjective 
evaluations with generating more structured speech.



Voice Conversion 
• Sequence-to-sequence VC with learned similarity metric 

(LSM) [Kaneko et al., Interspeech 2017]

D

Real
or

Fake
𝑪

Target 
speaker

Source 
speaker

𝑉 𝐶, 𝐺, 𝐷 = 𝑉𝑆𝑉𝐶
𝐷𝑙 𝐶, 𝐷 + 𝑉𝐺𝐴𝑁 (𝐶, 𝐺, 𝐷)

𝑮Noise
𝒛

𝑉𝑆𝑉𝐶
𝐷𝑙 𝐶, 𝐷 =

1

𝑀𝑙
𝐷𝑙 𝒚 − 𝐷𝑙 𝐶(𝒙 ) 2

𝒚

Similarity metric 



• Spectrogram analysis 

Fig. 16: Comparison of MCCs (upper) and STFT spectrograms (lower).

Voice Conversion (LSM)

Source Target FVC MSE(S2S) LSM(S2S)

The spectral textures of LSM are more similar to the target ones.



• Subjective evaluations

Table 12: Preference scores for naturalness.

Table 12: Preference scores for clarity.

Fig. 17: Similarity of TGT and SRC with VCs.

Voice Conversion (LSM)

LSM outperforms FVC and MSE in terms of subjective evaluations.
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speaker

Source 
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• CycleGAN-VC [Kaneko et al., arXiv 2017]

• used a new objective function to estimate G

𝑉𝐹𝑢𝑙𝑙 = 𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌 ＋𝑉𝐺𝐴𝑁 𝐺𝑋→𝑌, 𝐷𝑌
＋𝜆 𝑉𝐶𝑦𝑐(𝐺𝑋→𝑌, 𝐺𝑌→𝑋)
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• Subjective evaluations

Fig. 18: MOS for naturalness.

Fig. 19: Similarity of to source and 
to target speakers. S: Source; 
T:Target; P: Proposed; B:Baseline

Voice Conversion (CycleGAN-VC)

1. The proposed method uses non-parallel data.
2. For naturalness, the proposed method outperforms baseline.

3. For similarity, the proposed method is comparable to the baseline.
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speaker
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• Multi-target VC [Chou et al., arxiv 2018]
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• Subjective evaluations

Voice Conversion (Multi-target VC) 

Fig. 20: Preference test results  

1. The proposed method uses non-parallel data.
2. The multi-target VC approach outperforms one-stage only.

3. The multi-target VC approach is comparable to Cycle-GAN-VC in 
terms of the naturalness and the similarity.



Outline of Part II

Speech Signal Generation

• Speech enhancement 

• Postfilter, speech synthesis, voice conversion

Speech Signal Recognition 

• Speech recognition 

• Speaker recognition

• Speech emotion recognition

• Lip reading  

Conclusion 



Speech, Speaker, Emotion Recognition and Lip-reading 
(Classification Task)
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Speech Recognition 
• Adversarial multi-task learning (AMT) 

[Shinohara Interspeech 2016]
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• ASR results in known (k) and unknown (unk) 
noisy conditions

Speech Recognition (AMT) 

Table 13: WER of DNNs with single-task learning (ST) and AMT. 

The AMT-DNN outperforms ST-DNN with yielding lower WERs.



Speech Recognition 
• Domain adversarial training for accented ASR (DAT) 

[Sun et al., ICASSP2018]
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• ASR results on accented speech

Speech Recognition (DAT) 

1. With labeled transcriptions, ASR performance notably improves. 

Table 14: WER of the baseline and adapted model. 

2. DAT is effective in learning features invariant to domain differences 
with and without labeled transcriptions.

STD: standard speech



Speech Recognition 
• Robust ASR using GAN enhancer (GAN-Enhancer) 

[Sriram et al., arXiv 2017]
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• ASR results on far-field speech:

Speech Recognition (GAN-Enhancer)

GAN Enhancer outperforms the Augmentation and L1-
Enhancer approaches on far-field speech. 

Fig. 15: WER of GAN enhancer and the baseline methods.
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Speaker Recognition 
• Domain adversarial neural network (DANN) 

[Wang et al., ICASSP 2018]
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• Recognition results of domain mismatched conditions

Table 16: Performance of DAT and the state-of-the-art methods.

Speaker Recognition (DANN) 

The DAT approach outperforms other methods with 
achieving lowest EER and DCF scores. 
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Emotion Recognition 
• Adversarial AE for emotion recognition (AAE-ER) 

[Sahu et al., Interspeech 2017]

AE with GAN : 

𝐻 ℎ 𝒛 , 𝒙 + λ 𝑉𝐺𝐴𝑁 (𝒒, 𝑔(𝒙))

E

D

𝒙

Emb.

Syn.

𝒛 = 𝑔(𝒙)

𝑔(∙)

ℎ(∙)

𝒒

𝒙

G

The distribution of code vectors



• Recognition results of domain mismatched conditions:

Table 18: Classification results on real and synthesized features.

Emotion Recognition (AAE-ER) 

Table 17: Classification results on different systems.

1. AAE alone could not yield performance improvements.
2. Using synthetic data from AAE can yield higher UAR. 

Original
Training 

data
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Lip-reading
• Domain adversarial training for lip-reading (DAT-LR) 

[Wand et al., arXiv 2017]
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• Recognition results of speaker mismatched conditions

Lip-reading (DAT-LR) 

Table 19: Performance of DAT and the baseline.

The DAT approach notably enhances the recognition 
accuracies in different conditions. 
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More GANs in Speech 
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A promising research direction and still has room for further 
improvements in the speech signal processing domain 

Thank You Very Much

Tsao, Yu   Ph.D.
yu.tsao@citi.sinica.edu.tw

https://www.citi.sinica.edu.tw/pages/yu.tsao/contact_zh.html

mailto:yu.tsao@citi.sinica.edu.tw

