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Speech Signal Generation (Regression Task)
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‘ Obijective function
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Speech, Speaker, Emotion Recognition and Lip-reading
(Classification Task)
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Speech Enhancement

Enhancing

‘ Objective function

»Model structures of G: DNN [Wang et al. NIPS 2012; Xu et al., SPL 2014], DDAE
[Lu et al., Interspeech 2013], RNN (LSTM) [Chen et al., Interspeech 2015;
Weninger et al., LVA/ICA 2015], CNN [Fu et al., Interspeech 2016].

» Typical objective function

» Mean square error (MSE) [Xu et al., TASLP 2015], L1 [Pascual et al., Interspeech
2017], likelihood [Chai et al., MLSP 2017], STOI [Fu et al., TASLP 2018].

» GAN is used as a new objective function to estimate the parameters in G.




Speech Enhancement

» Speech enhancement GAN (SEGAN) [Pascual et al., Interspeech 2017]
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Speech Enhancement (SEGAN)

* Experimental results

Table 1: Objective evaluation results.

Table 2: Subjective evaluation results.

Metric Noisy Wiener | SEGAN Metric  Noisy Wiener | SEGAN
PESQ 1.97 2.22 2.16 MOS 2.09 270 3.18
CSIG 2.3 323 3.48
CBAK 2.44 2.68 2.94
COVL 2.63 2.67 2.80
SSNR 1.68 5.07 1.5 Fig. 1: Preference test results.
\ l
SEGAN-Wiener | | ] | .
SEGAN-Noisy |- | } |
| |
—2 0 2 4

SEGAN vyields better speech enhancement results than Noisy and Wiener.




Speech Enhancement

* Pix2Pix [Michelsanti et al., Interpsech 2017]
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Speech Enhancement (Pix2Pix)
e Spectrogram analysis

Fig. 2: Spectrogram comparison of Pix2Pix with baseline methods.

Pix2Pix outperforms STAT-MMSE and is competitive to DNN SE.




Speech Enhancement (Pix2Pix)

e Objective evaluation and speaker verification test

Table 3: Objective evaluation results.

| | PESQ
| SNR | 0O 5 10 15 20 | mean
(@ | 1.20 142 1.79 240 3.13 | 1.99
L L® [ 114 131 161 207 265]| 176
= | © [125 151 187 231 278 | 1.95
S| (@ | 120 148 198 250 293 | 202
(e) | 1.24 1.52 1.88 231 278 | 1.95
® | 1.20 149 2.00 253 203 | 2.03
I STOI
|| 0 5 10 15 20 mean
@ | 044 036 067 077 035 0.66
) ) | 043 056 066 074 081 | 0.64
= | @ 050 0.63 072 0.79 0.86 | 0.70
S| (@ | 046 059 071 078 083 | 067
() | 049 0.62 0.72 0.79 085 | 0.70
M | 046 060 071 077 082 ] 067

Table 4: Speaker verification results.

SNR ‘ 0 5 10 15 20  clean ‘ mean
(a) 21.09 1599 13.61 11.66 9.18 6.99 | 13.08
o (by 17.69 1258 8.17 6.53 627 5.80 | 9.51
§ (c) 1699 10.55 748 6.99 6.15 6.12 | 9.05
E (d 1719 884 544 505 463 374 | 7.48
=5 (e) 1599 899 6.12 6,12 558 567 8.08
(f) 1531 7.89 558 477 476 544 | 7.29
(a) No enhancement
(b) STSA-MMSE
(¢) NS-DNN
(d) NS-Pix2Pix
(e) NG-DNN
(f) NG-Pix2Pix

1. From the objective evaluations, Pix2Pix outperforms Noisy and
MMSE and is competitive to DNN SE.
2. From the speaker verification results, Pix2Pix outperforms the
baseline models when the clean training data is used.




Speech Enhancement
* Frequency-domain SEGAN (FSEGAN) [Donahue et al., ICASSP 2018]
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Speech Enhancement (FSEGAN)

e Spectrogram analysis

Fig. 2: Spectrogram comparison of FSEGAN with L1-trained method.

(b) L1-trained output G(x)

(c) Clean speech target y (d) FSEGAN output G(x)

FSEGAN reduces both additive noise and reverberant smearing.




Speech Enhancement (FSEGAN)
* ASR results

Table 5: WER (%) of SEGAN and FSEGAN. Table 6: WER (%) of FSEGAN with retrain.

Test Set  Enhancer ASR-Clean WER  ASR-MTR WER Model WER (%)
Clean None 11.9 14.3 MTR Baseline * 90.3
MTR [ None 72.9 20.3 | [_tStereo 19.0
G 80.7 028 MTR + FSEGAN Enhancer * 25.4
| FSEGAN 33.3 254 | + Retraining 210
| + Hybrid Retraining 17.6 |
MTR + L1-trained Enhancer * 21.4
+ Retraining 18.0
| + Hybrid Retraining A | |

1. From Table 5, (1) FSEGAN improves recognition results for ASR-Clean.
(2) FSEGAN outperforms SEGAN as front-ends.

2. From Table 6, (1) Hybrid Retraining with FSEGAN outperforms Baseline;
(2) FSEGAN retraining slightly underperforms L1-based retraining.



Speech Enhancement

» Adversarial training based mask estimation (ATME)
[Higuchi et al., ASRU 2017]
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Speech Enhancement (ATME)

* Spectrogram analysis

Fig. 3: Spectrogram comparison of (a) noisy; (b) MMSE with
supervision; (c) ATMB without supervision.
(a) (b) r
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The proposed adversarial training mask estimation can
capture speech/noise signals without supervised data.




Speech Enhancement (ATME)

* Mask-based beamformer for robust ASR

» The estimated mask parameters are used to compute spatial covariance
matrix for MVDR beamformer.

> §f,t:

H
Wr

Vst , where 8¢ is the enhanced signal, and ys ; denotes the
observation of M microphones, f and t are frequency and time indices;
W, denotes the beamformer coefficient.

> A LY
The MVDR solves w¢ by: wg ¥ (R}(Cs+n))_1 h

» To estimate hf, the spatial covariance matrix of the target signal,|R; | is
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Speech Enhancement (ATME)

 ASR results

Table 7: WERs (%) for the development and evaluation sets.

dev . eval

systems
y avg || bus | caf | ped | str avg bus caf | ped Str

Unprocessed 9.01 || 14.00 | 7.94 | 6.03 | 8.05 || 15.60 || 22.55 | 16.21 | 12.89 | 10.74

Adversarial Training || 5.00 || 7.60 | 4.09 | 4.03 | 429 || 7.58 | 1024 | 7.51 | 6.20 | 6.39

MMSE 483 || 720 | 4.04 | 3.98 | 410 || 7.04 || 9.25 | 6.67 | 6.02 | 6.24 |

1. ATME provides significant improvements over Unprocessed.
2. Unsupervised ATME slightly underperforms supervised MMSE.




Speech Enhancement (AFT)

* Cycle-GAN-based acoustic feature transformation (AFT)
[Mimura et al., ASRU 2017]
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Speech Enhancement (AFT)

* ASR results on noise robustness and style adaptation

Table 8: Noise robust ASR. Table 9: Speaker style adaptation.

acoustic model | feature | cycleloss | Aand p | WER | ID | SORTER faroet foatite WER
no adapt. no adapt. - - 41.08 | (1) =
no adapt. adapt. with Gr—s no 1,1 5545 | (2) INAS CSJ-SPS no Zldﬂ])t. 26.47
yes 1,1 13734103 adapt. with Gr— s | 25.93
yes trained | 36.56 | (4) -
adapt. with Gs_1 no adapt. yes .- 3598 | (5) CSJ-APS CSJ-SPS no Z’ldﬂ]){. 1313
yes trained | 34.31 | (6) adapt. with Gr—5s | 16.60
S: Clean; T: Noisy JNAS: Read; CSJ-SPS: Spontaneous (relax);

CSJ-APS: Spontaneous (formal);

1. Gr_ can transform acoustic features and effectively improve
ASR results for both noisy and accented speech.

2. Gg_,7 can be used for model adaptation and effectively improve
ASR results for noisy speech.




Outline of Part Il

e Speech enhancement

e Postfilter, speech synthesis, voice conversion

[Scott Reed, et al, ICML, 2016]
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Postfilter

* Postfilter for synthesized or transformed speech

Natural
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‘ Obijective function

» Conventional postfilter approaches for G estimation include global variance
(GV) [Toda et al., IEICE 2007], variance scaling (VS) [Sil’'en et al., Interpseech
2012], modulation spectrum (MS) [Takamichi et al., ICASSP 2014],DNN with
MSE criterion [Chen et al., Interspeech 2014; Chen et al., TASLP 2015].

» GAN is used a new objective function to estimate the parameters in G.



Postfilter

* GAN postfilter [kaneko et al., ICASSP 2017]
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» Traditional MMSE criterion results in statistical averaging.
» GAN is used as a new objective function to estimate the parameters in G.

» The proposed work intends to further improve the naturalness of
synthesized speech or parameters from a synthesizer.



Postfilter (GAN-based Postfilter)

e Spectrogram analysis

Fig. 4: Spectrograms of: (a) NAT (nature); (b) SYN (synthesized); (c) VS (variance
scaling); (d) MS (modulation spectrum); (e) MSE; (f) GAN postfilters.
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GAN postfilter reconstructs spectral texture similar to the natural one.




Postfilter (GAN-based Postfilter)

* Objective evaluations

Fig. 6: Averaging difference in
modulation spectrum per Mel-
cepstral coefficient.

Fig. 5: Mel-cepstral trajectories (GANv:
GAN was applied in voiced part).
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GAN postfilter reconstructs spectral texture similar to the natural one.




Postfilter (GAN-based Postfilter)

* Subjective evaluations

Table 10: Preference score (%). Bold font indicates the numbers over 30%.

Former Latter Neutral
GAN vs. SYN | 565+49 220+4.1 21.5+4.0

GAN vs. GANv | 11.3+3.1 37.3+£48 51.5+49
GANvs. NAT | 16.8 £3.7 83.5+49 298+45

GANvvs. NAT | 30.3+45 345+47 35.3+47

1. GAN postfilter significantly improves the synthesized speech.
2. GAN postfilter is effective particularly in voiced segments.
3. GANv outperforms GAN and is comparable to NAT.




Postfilter (GAN-postfilter-SFTF)

* GAN post-filter for STFT spectrograms [kaneko et al.,
Interspeech 2017]

2 TTS synthesized Window function GAN postfiltered
Synthesized GAN-based Reconstructed i
. ' ili""' ..L_.-? — =
" f5 ] Spectrogram 4 Postfilter Spectrogram 4
3 —
fi :
> e —— Synthesized ~ GAN-based L) Reconstructed >
S vgi | Spectrogram 3 Postfilter Spectrogram 3 S
“g’ fs Synthesized GAN-based R tructed "g’
s s | ——>| Synthesized | _ -based | _| Reconstructe &
l Spectrogram 2 Postfilter Spectrogram 2
. }
Synthesized ~ GAN-based N Reconstructed
- === Spectrogram 1 Postfilter Spectrogram 1
h Time 1. Partition: 2. Postfiltering: 3. Concatenation:
Divide spectrogram into multiple Apply GAN-based postfilter Apply window function to each band
frequency bands with overlap to each band and connect them with overlap

» GAN postfilter was applied on high-dimensional STFT spectrograms.

» The spectrogram was partitioned into N bands (each band overlaps its
neighboring bands).

» The GAN-based postfilter was trained for each band.

» The reconstructed spectrogram from each band was smoothly connected.



Postfilter (GAN-postfilter-SFTF)

* Spectrogram analysis

Fig. 7: Spectrograms of: (1) SYN, (2) GAN, (3) Original (NAT)
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| GAN postfilter reconstructs spectral texture similar to the natural one. |




Speech Synthesis
o fpmet Hinguiibiesifeattiten D apoat§isg eecHipatiam ¢ASNg)

[Saito et al., ICASSP 2017]
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Speech Synthesis (ASV)

* Objective and subjective evaluations

Global variance

10" ; ) T
; ; Preference score
. | --- Natural . ! !
y [l T, T —— J—— s B b o Proposed
g | Propo;sed (wp ,5_1.0) (w —1.0) | . |
AL Proposed : : :
(wp =0.3) : : l—ﬂ
i 00 02 04 06 08 10
4 |

Fig. 8: Averaged GVs of MCCs. Fig. 9: Scores of speech quality.
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1. The proposed algorithm generates MCCs similar to the natural ones.
2. The proposed algorithm outperforms conventional MGE training.




Speech Synthesis

* Speech synthesis with GAN (SS-GAN) [saito et al., TASLP 2018]
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Speech Synthesis (SS-GAN)

* Subjective evaluations

Fig. 10: Scores of speech quality (sp).
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Fig. 11: Scores of speech quality
(sp and FO).

(a) MGE vs. Proposed (sp+F0)

Proposed
(sp+FO0)

MGE | |
0.0 0.2 0.4 0.6 0.8 120
(b) Proposed (sp) vs. Proposed (sp+FO0)
Proposed : : : 5
(sp+FO0) : .
Proposed :
(Sp) | I__' i

0.0 0.2 0.4 0.6 0.8 1.0
Preference score

The proposed algorithm works for both spectral parameters and FO.




Speech Synthesis

* Speech synthesis with GAN glottal waveform model
(GlottGAN) [Bollepalli et al., Interspeech 2017]
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Speech Synthesis (GlottGAN)

* Objective evaluations

Fig. 12: Glottal pulses generated by GANs.

0.00 -
—0.25 1 " Ref

0.00 -
—0.25 - —— GAN

0.00 1
-0.25- — CGAN

0.00 1
—0.25 1 — CGAN+CNN

—A—
—0.25 = CGAN+CNN+LS

5
pulses

G, D: DNN

G, D: conditional DNN

G, D: Deep CNN

G, D: Deep CNN + LS loss

The proposed GAN-based approach can generate glottal

waveforms similar to the natural ones.



Speech Synthesis

* Speech synthesis with GAN & multi-task learning
(SS-GAN-MTL) [Yang et al., ASRU 2017]
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Speech Synthesis (SS-GAN-MTL)

* Speech synthesis with GAN & multi-task learning
(SS-GAN-MTL) [Yang et al., ASRU 2017]
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Speech Synthesis (SS-GAN-MTL)

* Objective and subjective evaluations

Table 11: Objective evaluation results.

Fig. 13: The preference score (%).

Methods | MCD (dB) | Fo RMSE (Hz) | V/UV (%)
BLSTM 4.624 18.544 6.447
ASV [16] 4.670 18.871 6.562
GAN 4.633 18.678 6.492
GAN-PC 4.628 18.616 6.464

29.5%
Neutral

27.0%
BLSTM

28.7%
ASV

32.2%
Neutral

26.3%
GAN-PC

36.8%
Neutral

30.5%
Neutral

29.0%
BLSTM

1. From objective evaluations, no remarkable difference is observed.
2. From subjective evaluations, GAN outperforms BLSTM and ASV,

while GAN-PC underperforms GAN.




Voice Conversion

e Convert (transform) speech from source to target

% Target
speaker
£ Source

5~ speaker ‘ Objective function

» Conventional VC approaches include Gaussian mixture model (GMM) [Toda
et al., TASLP 2007], non-negative matrix factorization (NMF) [Wu et al., TASLP
2014; Fu et al., TBME 2017], locally linear embedding (LLE) [Wu et al.,
Interspeech 2016], restricted Boltzmann machine (RBM) [Chen et al., TASLP
2014], feed forward NN [Desai et al., TASLP 2010], recurrent NN (RNN)
[Nakashika et al., Interspeech 2014].




Voice Conversion
* VAW-GAN [Hsu et al., Interspeech 2017]

% Target
speaker

£y Source
o~ speaker

Real
D __J» or

Fake

» Conventional MMSE approaches often encounter the “over-smoothing” issue.
» GAN is used a new objective function to estimate G.
» The goal is to increase the naturalness, clarity, similarity of converted speech.

V(G,D) = Vgan(G,D) + AVy 4 (x|y)




Voice Conversion (VAW-GAN)

* Objective and subjective evaluations
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VAW-GAN outperforms VAE in terms of objective and subjective

evaluations with generating more structured speech.




Voice Conversion

* Sequence-to-sequence VC with learned similarity metric

(LSM) [Kaneko et al., Interspeech 2017]
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Voice Conversion (LSM)

e Spectrogram analysis

Fig. 16: Comparison of MCCs (upper) and STFT spectrograms (lower).
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The spectral textures of LSM are more similar to the target ones.




Voice Conversion (LSM)

* Subjective evaluations

Table 12: Preference scores for naturalness. Fig. 17: Similarity of TGT and SRC with VCs.

Table 12: Preference scores for clarity.

Former | Latter | Neutral

Percentage

100 —

Former Latter Neutral
FVC vs. LSM 17.1 & 6.3 729 + 7.5 10.0 5.0 - i
MSE vs. LSM 10.0 £+ 5.0 84.3 + 6.1 5.7+ 39 60 i

FvCvs.LSM | 329 +79l 543484 |120+56 (a) Similarity to TGT (b) Similarity to SRC
MSE vs. LSM 203 =TS 65.0 + 8.0 7945
% Target Source
speaker o~ speaker

* $

LSM outperforms FVC and MSE in terms of subjective evaluations.




Voice Conversion
¢ CycIeGAN-VC [Kaneko et al., arXiv 2017]
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Voice Conversion (CycleGAN-VC)

* Subjective evaluations

Fig. 19: Similarity of to source and
to target speakers. S: Source;

Fig. 18: MOS for naturalness. _
T:Target; P: Proposed; B:Baseline
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1. The proposed method uses non-parallel data.
2. For naturalness, the proposed method outperforms baseline.

3. For similarity, the proposed method is comparable to the baseline.




Voice Conversion

* Multi-target VC [chou et al., arxiv 2018]
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Voice Conversion (Multi-target VC)
* Subjective evaluations

Fig. 20: Preference test results

*proposed =stage 1 only -proposed =Cycle-GAN-VC(re-imple)
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1. The proposed method uses non-parallel data.
2. The multi-target VC approach outperforms one-stage only.

3. The multi-target VC approach is comparable to Cycle-GAN-VC in
terms of the naturalness and the similarity.
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Speech, Speaker, Emotion Recognition and Lip-reading
(Classification Task)

Domain Adversarial Training

N t only cheat the domain
sifier, but sati fy ng label
pre d ctor at the e time

Successfully a ppl do mg classification
[Ganin et al, ICML, 2015][Aj et al. JML R, 2016 ]
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Speech Recognition

» Adversarial multi-task learning (AMT)
[Shinohara Interspeech 2016]
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Speech Recognition (AMT)

* ASR results in known (k) and unknown (unk)
noisy conditions

Table 13: WER of DNNs with single-task learning (ST) and AMT,
noise ST | AMT | RERR

Kk car 2000cc 5.83 506 4.63
k exhib. booth 6.80 6.66 2.06
k station 7.89 7.6 1.65
k crossing 6.96 6.65 4.45

unk | car 1500cc 5.58 5.46 215
unk | exhib. aisle 171 6.93 10.12
unk factory 12.17 | 12.92 -6.16
unk highway 9.73 9.52 2.16

unk crowd 6.72 6.40 4.76
unk | server room 8.54 7.76 0.13
unk air cond. 6.96 6.98 -0.29
unk elev. hall 0.23 9.60 -4.01

average 7.84 7.68 2.04

The AMT-DNN outperforms ST-DNN with yielding lower WERs.




Speech Recognition

* Domain adversarial training for accented ASR (DAT)
[Sun et al., ICASSP2018]
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Speech Recognition (DAT)

* ASR results on accented speech

Table 14: WER of the baseline and adapted model.

training data A il
= STD | FJ IS JX SC | GD | HN | Avg.
STD - | 1555 | 23.58 | 1575 | 14.08 | 1562 | 15.32 | 1934 | 17.28
STD + (600hrs with trans) | - | 14.22 | 14.84 | 941 | 868 | 9.13 | 9.62 | 11.89 | 10.60
STD + (600hrs no trans) | 0.03 | 15.37 | 22.96 | 14.48 | 13.79 | 15.35 | 14.86 | 18.24 | 16.6]

STD: standard speech

1. With labeled transcriptions, ASR performance notably improves.
2. DAT is effective in learning features invariant to domain differences
with and without labeled transcriptions.




Speech Recognition

e Robust ASR using GAN enhancer (GAN-Enhancer)
[Sriram et al., arXiv 2017]

Cross entropy with L1 Enhancer:
lz — z||,
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Speech Recognition (GAN-Enhancer)

* ASR results on far-field speech:

Fig. 15: WER of GAN enhancer and the baseline methods.

Model Near-Field Far-Field
CER WER CER WER
seq-to-seq 7.43% 21.18% | 23.76% 50.84%
seq-to-seq + far-field Augmentation | 7.69% 21.32% | 12.47%  30.59%
seq-to-seq + L!-Distance Penalty 7.54% 20.45% | 12.00% 29.19%
seq-to-seq + GAN Enhancer 7.78% 21.07% | 11.26% 28.12%

GAN Enhancer outperforms the Augmentation and L1-
Enhancer approaches on far-field speech.
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Speaker Recognition

 Domain adversarial neural network (DANN)

[Wang et al., ICASSP 2018]
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Speaker Recognition (DANN)

e Recognition results of domain mismatched conditions

Table 16: Perf_ormance of DAT and the state-of-the-art methods.

Systems# Adaptation EER% | DCF10 | DCF08
Methods [21]

1 - 9.35 0.724 | 0.520
2 - 5.66 0.633 | 0.427
3 Interpolated [6] [12] 6.55 0.652 | 0.454
4 IDV [9] [12] 6.15 0.676 | 0.476
5 DICN [11][12] 4.99 0.623 | 0.416
6 DAE [22] [12] 481 0.610 | 0.398
T AEDA [12] 4.50 0.589 | 0.362
8 DAT 373 0.541 | 0.335

The DAT approach outperforms other methods with
achieving lowest EER and DCF scores.
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Emotion Recognition

* Adversarial AE for emotion recognition (AAE-ER)
[Sahu et al., Interspeech 2017]

X

001
1

-
.

I
1001

X

h()

z = g(x)

AE with GAN :
H(h(z),x) + AVsay (q, g(x))

15

10
\ s

0 .'..' "

5

The distribution of code vectors



Emotion Recognition (AAE-ER)

* Recognition results of domain mismatched conditions:

Table 17: Classification results on different systems.

OpenSmile | Code Auto- LDA | PCA
features vectors || encoder
(1582-D) (2-D) | (100-D) | (2-D) | (2-D)
UAR (%) 57.88 56.38 53.92 48.67 | 43.12

Table 18: Class

155 I rmynthesized features.

AR (%)

Training
data

5.00
3,72
57.88

58.38

1. AAE alone could not yield performance improvements.
2. Using synthetic data from AAE can yield higher UAR.
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Lip-reading

 Domain adversarial training for lip-reading (DAT-LR)
[Wand et al., arXiv 2017]
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Lip-reading (DAT-LR)

* Recognition results of speaker mismatched conditions

Table 19: Performance of DAT and the baseline.

Adversarial Number of Target Relative
o is $ g p-value
Training on training spk~ Testacc.  Improvement
1 18.7%
None 4 39.4%
8 46.5%
1 25.4% 35.8% 0.0030x
?elcl]g%: 4 13.6% 107%  0.0261%
8 49.3% 6.0% 0.0266x
50 Tarcet 1 24.1% 28.9% 0.0045x
b 4 41.5% 5.3% 0.1367
1 3 47.0% 1.1% 03555

The DAT approach notably enhances the recognition
accuracies in different conditions.
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Speech Signal Generation (Regression Task)

Paired

‘ Obijective function

Y ‘-‘ Output

N [Scott Reed, et al, ICML, 2016] Cycle GAN
Conditional GAN

as close as possible

c: train
N
Prior distribution Z »d
c » - scalar: belongs to scalar: belongs to
» scalar *"°™@ Istic or not + domain X or not domain Y or not
c and x are matched or not
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True text-image pairs: (train, ﬁ) 1
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Speech, Speaker, Emotion Recognition and Lip-reading
(Classification Task)

Domain Adversarial Training

N t only cheat the domain
sifier, but sati fy ng label
pre d ctor at the e time

Successfully a ppl do mg classification
[Ganin et al, ICML, 2015][Aj et al. JML R, 2016 ]
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More GANSs in Speech
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A promising research direction and still has room for further
improvements in the speech signal processing domain
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